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CHAPTER
ONE

INTRODUCTION

OpenBTE is a Python-based tool for modeling particles flux at the nondiffusive level and in arbitrary geometries.
Current focus is on thermal transport. The code implements the phonon Boltzmann transport equation, informed by
first-principles calculations. Both forward and backward modes are supported, enabling inverse design using direct
parameter optimization. A typical OpenBTE simulation is given by the combination of three main blocks: Mesh,
Material and Solver.
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When possible, OpenBTE automatically exploits parallelism using Python’s Multiprocessing module. By default, all
the available virtual cores (vCores) are employed. To run your script with a given number of vCores, use the np flag,

e.g.

python run.py -np 4

Main features include:
* Vectorial mean-free-path interpolation
* Interface with first-principles solvers
* Arbitrary geometries
* Inverse design
* Interactive temperature and flux maps visualization
« Effective thermal conductivity

* Outputting data in . vtu format for advanced visualization



https://docs.python.org/3/library/multiprocessing.html
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CHAPTER
TWO

INSTALLING OPENBTE

OpenBTE is available to install via the Python Package Index.

pip install --upgrade openbte

If you want to enable OpenBTE for GPUs, you will have to install the JAX version for your CUDA driver.



https://pypi.org/project/openbte/
https://github.com/google/jax#installation
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CHAPTER
THREE

EXAMPLE 1: POROUS MATERIAL

An OpenBTE simulation is specified by a combination of a material, geometry and solver. We begin with creating a
material. To this end, we load previously computed first-principled calculations on Si at room temperature

from openbte import load_rta
rta_data = load_rta('Si_rta')

Next step is to perform MFP interpolation

from openbte import RTA2DSym
mat = RTA2DSym(rta_data)

The RTA2DSym model is for simulation domains which have translational symmetry along the z axis. To create a
geometry, we instantiate an object of the class Geometry

from openbte import Geometry
G = Geometry(0.1)
where 0.1 is the carhacteristic size (in nm) of the mesh. In this example, we create a porous material with porosity

0.2 and rectangular aligned pores. Given the periodicity of the system, we simulate only a unit-cell to which we apply
periodic boundary conditions. To define the unit-cell, we use the add_shape method

from openbte import rectangle
L = 10 #nm
G.add_shape(rectangle(area = L*L))

To add the hole in the middle, we use the add_hole method

porosity = 0.2
area = porosity*L*L
G.add_hole(rectangle(area = area,x=0,y=0))

To apply boundary conditions, we need to assign a name to sides and refer to them in the solver section. Sides are
selected with selector. In this case, we assign all internal sides the name Boundary
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G.set_boundary_region(selector = 'inner',region = 'Boundary')
To apply periodic boundary conditions along both axes, we use the set_periodicity method
G.set_periodicity(direction = 'x',region = '"Periodic_x")
G.set_periodicity(direction = 'y',region = 'Periodic_y"')

At this point, we are ready to save the mesh on disk

G.save()

If everything went smoothly, you should see mesh.geo in your current directory. You can open them with GMSH to
check that the geometry has been created correctly. To create a meshed geometrym we use the function get_mesh()

from openbte import get_mesh
mesh = get_mesh()

Before setting up the solvers, we need to specify boundary conditions and perturbation. In this case, we apply a
difference of temperature of AT,y = 1 K along x

from openbte.objects import BoundaryConditions

boundary_conditions = BoundaryConditions(periodic={'Periodic_x': 1,'Periodic_y':0},
—diffuse="'Boundary')

Note that we also specifies diffuse boundary conditions along the region Boundary. In this example, we are interested
in the effective thermal conductivity along x

from openbte.objects import EffectiveThermalConductivity
effective_kappa = EffectiveThermalConductivity(normalization=-1,contact="Periodic_x")

where normalization («) is used in the calculation of the effective thermal conductivity keg = o [ _%32 J(L/2,y) -
fdy. For rectangular domain, o« = — L /L, /ATy

To run BTE calculations, we first solve standard heat conduction

from openbte import Fourier

fourier = Fourier (mesh,mat.thermal_conductivity,boundary_conditions,\
effective_thermal_conductivity=effective_kappa)

Finally, using fourier as first guess, we solve the BTE

from openbte import BTE_RTA

bte = BTE_RTA(mesh,mat,boundary_conditions, fourier=fourier,\
effective_thermal_conductivity=effective_kappa)

Before plotting the results, we group together Fourier and BTE results

6 Chapter 3. Example 1: Porous Material


https://gmsh.info/
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from openbte.objects import OpenBTEResults

results = OpenBTEResults(mesh-mesh,material = mat,solvers={'bte':bte, ' 'fourier':fourier})

Lastly, the temperature and heat flux maps can be obtained with

results.show()

GMSH



https://gmsh.info/
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CHAPTER
FOUR

EXAMPLE 2: INVERSE DESIGN (NEW!)

In this example, we will design a nanomaterial withi a prescribed effective thermal conductivity tensor (diagonal com-
ponents). To this end, we first get a BTE solver, specifically developed for inverse design

from openbte.inverse import bte

grid = 20

f = bte.get_solver(Kn=1, grid=grid,directions=[[1,0],[0,1]1]1)

The function f takes the material density and gives the effective thermal conductivity tensor as well as its gradient
wrt the material density. It is a differentiable function, i.e. it can be composed with arbitrary JAX functions to obtain

end-to-end differentiability. This approach allows us to write down generic cost functions. In this case, we want to
minimize ||k — k||, where & is the desired value

from jax import numpy as jnp

kd = jnp.array([0.3,0.2])
def objective(x):

k,aux = f£(x)
g = jnp.linalg.norm(k-kd)
return g, (k,aux)

The gradient is managed automatically. Finally, the optimization is done with

from openbte.inverse import matinverse as mi

L = 100 #nm
R = 30 #nm
X = mi.optimize(objective,grid = grid,L = L,R = R,min_porosity=0.05)

where R is the radius of the conic filter. Lastly, you can visualize the structure with

mi.plot(x)
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CHAPTER
FIVE

REFERENCES
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mission, Structural and Multidisciplinary Optimization, (2022) Link
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G. Romano, Efficient calculations of the mode-resolved ab-initio thermal conductivity in nanostructures,
arXiv:2105.08181 (2021) Link
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G. Romano, A Di Carlo, and J.C. Grossman, Mesoscale modeling of phononic thermal conductivity of porous Si:
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8-13 52 (2012) Link
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CHAPTER
SIX

MODE-RESOLVED BULK DATA

The material underlying the structure is described by the following mode-resolved quantities:

Property [symbol] Shape | Units
scattering_time [r] | N S
heat_capacity [C] N Jm 3 K!
group_velocity[v] | N x3 | ms !

where N = N, x Ny, with N, and N, being the number of wave-vectors and polarization, respectively. The bulk
thermal conductivity tensor is given by

af _ a,B
KM = g OHTH’UMUM.
"

The (specific) heat capacity is defined by

2
C - kp Um
7 N,V |sinh(n,)

with 7, = hw,,/(2k;T"). Note that the presence of N, in the heat capacity is not standard but introduced here for
convenience.

The material data is stored as a sqlite3 database (with .db extension), which can be conveniently handled by sqlitedict.
With your material file, say foo.db, is in the current directory, you can load it with

from openbte import load_rta
rta_data = load_rta('foo',source="local"')

The above code is nothing than a wrapper to the sqlite3’s loader. Note that there is also a minimal database of
precomputed materials. Currently, it includes silicon at room temperature, computed with AlmaBTE.

from openbte import load_rta
rta_data = load_rta('Si_rta',source="database')

To save your own material data, you can also use a wrapper

import openbte.utils

#C = ...
#v = 5o-
#tau = ...

(continues on next page)
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(continued from previous page)
utils.save('rta',{'scattering_time':tau, 'heat_capacity':C, 'group_velocity':v}

You can double-check the consistency of your data by comparing the resulting thermal conductivity with the expected
one

import numpy as np

#C = ...

#v = soc

#tau = ...

#kappa = ... #Expected thermal conductivity tensor

print(np.allclose(np.einsum('u,ui,uj,u->ij"',C,v,v,tau)-kappa))
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CHAPTER
SEVEN

ALMABTE INTERFACE

AlmaBTE is a package that computes the thermal conductivity of bulk materials, thin films and superlattices. OpenBTE
is interfaced with AlmaBTE for RTA calculations via the script almabte2openbte.py.

Assuming you have AlmaBTE in your current PATH, this an example for Si.

¢ Download Silicon force constants from AlmaBTE’s database

wget https://almabte.bitbucket.io/database/Si.tar.xz
tar -xf Si.tar.xz & rm -rf Si.tar.xz

* Compute bulk scattering time with AlmaBTE.

echo "<singlecrystal>
<compound name='Si'/>
<gridDensity A='8' B='8' C='8"'/>
</singlecrystal>" > inputfile.xml

VCAbuilder inputfile.xml
phononinfo -f Si/Si_8_8_8.h5 300.0

* A file named Si_8_8_8_300K.phononinfo is in your current directory. Note that you can specify the temper-
ature. Here we choose 300 K. The file rta.db can then be created with

AlmaBTE20penBTE Si_8_8_8_300K.phononinfo

Finally, you can load the data with

from openbte import load_rta

rta_data = load_rta('rta',source="local')

15


https://almabte.bitbucket.io/
https://almabte.bitbucket.io/database/

OpenBTE, Release 0.1

16 Chapter 7. AImaBTE Interface



CHAPTER
EIGHT

VECTORIAL MFP INTERPOLATION

Next step is to perform vectorial MFP interpolation, as documented here. For systems with translational symmetry
along the z axis, you can use

from openbte import RTA2DSym
rta_data = RTA2DSym(rta_data, **kwargs)

where options include n_mfp and n_phi, i.e. the number of MFP (default = 50) and polar angle bins (default = 48). If
you are simulating a 3D material (not yet fully supported), you can use

from openbte import RTA3D
mat = RTA3D(rta_data, **kwargs)

where options now include n_theta as well, i.e. the azimuthal angular bins.

17
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CHAPTER
NINE

GMSH

OpenBTE uses Gmsh as a backend for geometry building. Once the file mesh.msh is created, it can be imported with
from openbte import get_mesh

mesh = get_mesh()

The physical regions will then be referred to by boundary conditions. OpenBTE handles 2D and 3D geometries,

although only 2D systems are currently supported. The name of physical regions associating to two periodic boundaries
must end with _a and _b.

19
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CHAPTER
TEN

GEOMETRY INTERFACE

For simple geometries, it is possible to write Gmsh code automatically using the Geometry module. As an example,
let’s start with the creation of a porous material, consisting of a unit-cell and a square pore located in the center. The
fist step is to build the Geometry object

from openbte import Geometry
G = Geometry(0.1)

where 0. 1 is the characteristic mesh size in nm. Then, the outer frame of the geometry is defined with the add_shape
method

from openbte import rectangle
L = 10 #nm
G.add_shape(rectangle(area = L*L,aspect_ratio = 1))

which in this case creates a square frame with side of 10 nm, whis is the unit-cell of the domain. The pore in the center
added via

from openbte import rectangle

porosity = 0.2

area = porosity*L*L
G.add_hole(rectangle(area = area,x=0,y=0))

If no name of the hole is given, then it will be considered as a void region and not included in the meshing. If a
name if given, then it is included in the simulation domain and referred to it during the BTE solution, e.g. for heat
sources. Finally, we have to define the boundary regions. This task entails selecting the boundary, through selector
and associate a name to it. The following selelectors are available: outer, inner, all, top, bottom, left and right.
In this case, we assign the name Boundary to all internal region, i.e. the wall of the pore.

G.set_boundary_region(selector = 'inner',region = 'Boundary')

Periodic boundary conditions can be assigned with the set_periodicity method

G.set_periodicity(direction = 'x',region = 'Periodic_x"')

G.set_periodicity(direction 'y',region = 'Periodic_y"')

21
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The region names Boundary, Periodic_x and Periodic_y will be referred to in the boundary conditions. Note that
all the boundaries of the simulation domain need to be associated to a region name. Lastly, the file mesh.msh is created
with

G.save()

To inspect your geometry, you can call gmsh from your command line

gmsh mesh.geo

and check the physical regions in the visibility section of the tool drop-down menu.

22 Chapter 10. Geometry Interface



CHAPTER
ELEVEN

BOUNDARY CONDITIONS

The object BoundaryConditions connects the physical boundaries defined in Geometry with the actual physics.
There are three boundary conditions: diffuse, mixed and periodic. In case of periodic boundary conditions, we
can also specify a temperature jump (albeit is not strictly a temperature jump but a heat source/sink pair) applied along
the associated direction. In our case, we apply a temperature jump of 1 K along x and associate the region Boundary
to diffuse boundary conditions

from openbte.objects import BoundaryConditions

boundary_conditions = BoundaryConditions(periodic={'Periodic_x': 1,'Periodic_y':0},
—.diffuse="'Boundary"')

The mixed boundary conditions include a thermostatting boundaries and a boundary conductance [in Wm ~2 K ~1]

from openbte.objects import BoundaryConditions

boundary_conditions = BoundaryConditions(mixed={'Isothermal': {'value':300, 'boundary_
—conductance':1e4}})

where we assumed that a region named Isothermal was previously defined.

23
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CHAPTER
TWELVE

EFFECTIVE THERMAL CONDUCTIVITY

To compute the effective thermal conductivity, we average the flux over a given contact. For example, assuming a
rectangular domain with size L, x L, the effective thermal conductivity for a perturbation applied along X (fz) is
given by

Ly/2
—L,/2

where o« = —L, /L, /ATy To this end, we define the boundary region name and the normalization factor alpha

from openbte.objects import EffectiveThermalConductivity

effective_kappa = EffectiveThermalConductivity(normalization=-1,contact="Periodic_x")

25
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CHAPTER
THIRTEEN

SOLVER

Currently, OpenBTE supports the anisotropic-MFP-BTE

-1
F,- VTM + Tu = Z Y Z 'YH’TM’
w'’ 74

where F = v.7, is the vectorial MFP and ,, = C,,/7,,. The first step in solving this equation is to provide a first
guess for the lattice temperature via solving the standard heat conduction equation. To this end, we use the Fourier
solver

from openbte import Fourier

fourier = Fourier (mesh,mat.thermal_conductivity,boundary_conditions,\
effective_thermal_conductivity=effective_kappa)

Finally, we can solve the BTE with

from openbte import BTE_RTA

bte = BTE_RTA(mesh,mat,boundary_conditions, fourier=fourier,\
effective_thermal_conductivity=effective_kappa)

The result of the simulations can then be consolidated in a OpenBTEResults object

from openbte.objects import OpenBTEResults
results = OpenBTEResults(mesh-mesh,material = mat,solvers={'bte':bte, 'fourier':fourier})

Lastly, we can save the results with

results.save()

where the file state.db is saved in you current directory. Optionally you can define a custom filename, without
including the . db suffix. Once ready for postprocessing, results can be load with

from openbte.objects import OpenBTEResults
results = OpenBTEResults.load()

where an optional £ilename can be specified.

27
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CHAPTER
FOURTEEN

PLOTTING THERMAL AND HEAT FLUX MAPS

Flux and temperatures maps can be visualized with

from openbte.objects import OpenBTEResults
results = OpenBTEResults.load()
results.show()

For advanced visualization, e.g. slicing etc..., you can save results in the .vtu format

results.vtu()

This will craete a file, output . vtu, compatible with the popular software Paraview .

29
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CHAPTER
FIFTEEN

LINE DATA

Line data can be plotted with

N = 100
path = np.stack((np.zeros(N),np.linspace(-0.5,0.5,N))).T

x,data = results.plot_over_line(variables=['Temperature_Fourier', 'Temperature_BTE', 'Flux_
—fourier', 'Flux_BTE'],x=path)

The variable x is the distance on the path and data is a dictionary containing the data interpolated on the path. For
example, the temperature computed with BTE can be accessed with data[ ' Temperature_BTE'].

31
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CHAPTER
SIXTEEN

INVERSE DESIGN

Inverse design seeks to find a material structure that leads to the desired material property. In this space, OpenBTE
provides routines for the standard heat conduction equation and Boltzmann transport equation in the single-MFP ap-
proximation, both solved over structured grids. We adopt the filtering and projecting method [O. Sigmund and K. Maute
(2013)] and the newly introduce Transmisison Interpolation Method (TIM) [G. Romano and S. G Johnson (2022)]. The
automatic differentiation framework is based on JAX. The optimization algorithm of choice is the method of moving
asymptotes (MMA) [Svanberg (2002)], implemented in NLOpt. The first step is to import a solver from the submodule
openbte.inverse

from openbte.inverse import bte
from openbte.inverse import fourier

Currently, only periodic structures can be simulated, with the perturbation being aligned along specified directions.
Multiple directions can be considered in the same simulations, e.g.

grid = 20

b
f

bte.get_solver(Kn=1, grid=grid,directions=[[1,0],[0,1]])
fourier.get_solver(grid=grid,directions=[[1,0],[0,1]])

Note that both solvers also take the grid in input, with the BTE solver also requiring the Knudsen number. The variables
f and b are fully differentiable solvers and can be integrated in an optimization pipeline. Here, we define the following
cost function

from jax import numpy as jnp

kd = jnp.array([0.3,0.2])
def objective(x):

k,aux = f(x)
g = jnp.linalg.norm(k-kd)
return g, (k,aux)

which seeks to engineer a material with a thermal conductivity tensor having the components k., = 0.3 and k., = 0.2.
Note that in this case, we chose to use the Fourier solver. Lastly, we start the optimization with

from openbte.inverse import matinverse as mi

L = 100 #nm
R 30 #nm

(continues on next page)
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(continued from previous page)
X = mi.optimize(objective,grid = grid,L = L,R = R,min_porosity=0.05)

where we specify the size of the simulation domain, the radius of the conic filter

wc:{;(l—'%'), |r|< R

0, otherwise.

Note that we also added the constraint of minimum porosity. Supported constraints include min_porosity and
max_porosity. Other options include:

* n_betas: The number of beta doubling for projection (default = 10). It starts with 5 = 2, and always end with
a pass with a very large (3, not accounted for in this option

e max_iter: The number of iteration for each beta (default=25)
¢ tol: tolerance on the cost function

e inequality_constraints: alist of function to be used as inequality constraints. They follow the same syntax
as the objective function
* monitor: whether to have intermediate structures plotted during optimization

* output_file: whether to save the convergence history (default==""output™").

Although this example pertains to thermal transport, the inverse design framework is quite general and can be used in
combination with other differentiable solvers. If you wish to plug your own solver, it must follow this syntax

def solver(x)

return (output,aux),jacobian

where x is the material density (/V), output is the cost function (M), and jacobian is the sensitivity of the cost
function with respect to the material density (M x N). Then, it can be interfaced with

from openbte.inverse import matinverse as mi
s = mi.compose(solver)
From now on, s can be used in the optimizion pipeline, which includes filtering and projection. Note that aux includes

variables that are not directly related to optimization but that are still worth retaining for later use, e.g. the temperature
map.

34 Chapter 16. Inverse Design
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